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Abstract 

The  Demo III program has as its primary  focus the 
development  of  autonomous  mobility for a  small  rug- 
ged  cross country vehicle. Enabling vision based ter- 
rain  perception  technology for classification of  scene 
geometry  and  material  is  currently  under  development 
at JPL. In this paper we  report  recent progress on 
both stereo-based obstacle  detection  and terrain cover 
color-based classification. Our experiments  show that 
the integration of geometric  description  and terrain 
cover  characterization  may  be the key to enabling 
successful  autonomous  navigation in cross-country 
vegetated terrain. 

Keywords: Autonomous navigation, obstacle detec- 
tion, stereo vision, color classification. 

1 Introduction 

The ability to navigate autonomously in vege- 
tated,  off-road  terrain  may be the most critical  technol- 
ogy  needed  for  Unmanned  Ground  Vehicles  (UGV) 
today. The DEMO 111 program [7] has as primary f e  
cus the development of autonomous mobility technol- 
ogy for a small ground vehicle  over  cross-country, 
rugged terrain. The Experimental  Unmanned  Vehicle 
(XUV) must  be able to drive autonomously at speeds 
of  up  to 40 mph  on roads, 20 mph off road  by day, 
and 10 mph off road by night or in  foul  weather  condi- 
tions. The Autonomous Mobility (AM)  sensor suite 
of  the  DEMO I11 XUV includes a LADAR, a radar, 
and color and infiared (FLIR) cameras (visible on the 
front of the vehicle in Figure 1). The Jet Propulsion 
Laboratory (JPL) is developing technology for  the 
vision-based terrain perception part of the DEMO IIl 
system, which  is a key component to enabling 
autonomous mobility in  cross-country  vegetated ter- 
rain. The JPL terrain perception system  interfaces with 
the world  model system developed by NIST, which 
integrates data from the other sensors (radar  and  laser 
rangefinder). 

One  of the challenges  posed  by  DEMO 111 is  the 
integration of geometric terrain  description  with  terrain 
cover  characterization.  Geometric  information  is  used 
to recover the 3-D  scene structure. It allows the detec- 
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tion of positive obstacles (that is, non-traversable areas 
that should be avoided), negative obstacles (such as 
ditches or holes), and terrain surface characteristics to 
help determine the most effective yet safe velocity for 
the traversal. While  in typical urban environments the 
geometry description alone  is  sufficient to characterize 
the  traversability of a path, terrain  cover  characteristics 
should also be  taken into account for  off-road  naviga- 
tion. For example, assume that the  range sensors de- 
tect an  obstacle 40 cm high in  front  of the vehicle. 
This obstacle should be steered around if it is a rock, a 
log, or some other impenetrable material. However, if 
this obstacle is just a small bush or a tuft  of grass, the 
vehicle  may  safely  run over it, with obvious advan- 
tages in terms of driving efficiency. An  extreme  case is 
given by navigation in a field  of tall grass. The eleva- 
tion map will represent the scene as a basically hori- 
zontal  surface  above the ground level  (where  the  vehi- 
cle lies); that is, as a big obstacle in front  of  the  vehi- 
cle. Indeed, planning a path through tall grass is  pos- 
sible only if the navigation system realizes that the 
load-bearing  surface lies below the top grass level. It 
is  apparent that only  by integrating the geometry de- 
scription with  terrain  cover  characterization will a ro- 
bot be able to navigate  in such critical conditions. 

Figure 1 :  The XUV DEMO 111. 
In this paper we report  recent  progress  on  the  de- 

velopment  and implementation of algorithms for  ter- 
rain  perception at JPL. Only passive sensors (color 
and  FLIR  cameras) are considered  here. In the area of 
geometric  terrain analysis, we demonstrate  the per- 
formance of simple real-time algorithms for positive 
and negative obstacle detection both by  day  and night. 
These techniques  work directly on the  range image, 
computed by real-time stereo triangulation. Due to the 



extreme terrain conditions considered in the DEMO IU 
program, it is not advisable to analyze stereo images 
with respect to a horizontal horopter, i.e., to a  plane 
fitted to the ground surface, as often  proposed for  navi- 
gation on  paved roads. Indeed, fitting an horizontal 
horopter  on  a  very  rugged or vegetated  terrain surface 
with large variations of the surface height is  a  ques- 
tionable operation. Furthermore, tall obstacles (such as 
a hanging branch)  will  produce  large disparity values 
in stereo pairs warped  with  respect to a ground plane 
horopter, and may not  be  detected if a  reduced  size 
search window is used. 

Terrain cover  characterization  is performed on 
color images using pattern  recognition  techniques. 
The proposed color-based  classification algorithm is 
very  fast  and robust to changing illumination condi- 
tions. The classification is completely registered to the 
range data; subsequent reasoning may  determine  the 
actual traversability of obstacles detected  by range 
sensing, toward the final goal of estimating the actual 
load  bearing surface in front of the  vehicle. 

Figure 2. The JPL HMMWV. 
Our algorithms are tested on the JPL HMMWV 

(High Mobility Multi-Wheeled Vehicle)  shown in 
Figure 2. This testbed vehicle is provided with  color 
camera  pairs  (Hitachi  HV-C20  and  Sony  DXC 9000), 
a Pulnix TM9701  monochrome  camera pair installed 
on  a pan-tilt head, and  an Amber Radiance 3-5 micron 
FLIR camera pair. The computing system includes a 
number of Motorola CPU cards (MVME172, 2400, 
2700) running VxWorks, which are used  for  iris  con- 
trol, image acquisition, stereo vision, obstacle detec- 
tion, velocity control, gaze  control  and  terrain cover 
classification. The vehicle is equipped with  a  NovAtel 
RT20 differential global positioning system (DGPS) 
receiver, which yields a 20 cm  horizontal  circular error 
probable (CEP) accurate positioning solution at 10 
Hz. It also contains a  Honeywell  Modular  Azimuth 
Positioning System (MAPS), an inertial navigation 
system (INS) that produces position, orientation, and 
velocity data at 25  Hz. The INS and DGPS solutions 
are  integrated  with  an  external  Kalman  filter. The ve- 
hicle has robotically actuated throttle, brake, steering 
and gear selection. 

This paper is organized as follows. In Section 2, 
we describe the  application of our real-time  stereo  sys- 
tem to geometric terrain  representation  and  obstacle 

detection. In Section 3 we introduce our color-based 
terrain cover classification  system. 

2 Geometric Terrain  Representation 

Resolution requirements for obstacle detection  in 
DEMO 111 have  been  derived  in [ l ]  and [5], based  on 
the procedure  described  in [5]. The nominal obstacle 
sizes for the  DEMO I11 XUV are 35 cm  for “positive” 
obstacles and 70 cm  for “negative” obstacles. The 
study in [5] has shown the need  for  a stereo system 
mounted on  a padtilt device, which allows coverage 
of  a wide field  of  regard  (around  75  degrees)  while 
maintaining a  narrow instantaneous field of  view 
(IFOV)  of about 1 mradpixel. For what concerns 
FLIR cameras to be  used for night vision, [6] derives 
the requirements  in terms of signal-to-noise ratio and 
exposure time (to avoid motion-induced blurring). It 
is maintained in [6] that in order to fulfill the DEMO 
111 requirements,  a cooled FLIR stereo pair should be 
used. The current XUV vehicle has a pair of 3-5 mi- 
cron  Merlin cooled FLIR  cameras,  produced  by  Indigo 
Systems. 

The JPL stereo system is able to produce  dispar- 
ity maps at a  rate  of 6 Hz on  a single PowerPC 750 
microprocessor with  7x7  pixel correlation window and 
search  range of 40 pixels on images at resolution level 
1. (Resolution level 0 corresponds to the full 640x480 
pixel image, level 1 corresponds to half size, and so 
on). We also implemented a “dual resolution” scheme 
where disparities are computed on  a subwindow d 
attention at resolution  level 0. Currently, we  are  con- 
verting the system to run on a  dual PowerPC G4 
processor,  which includes 128-bit  vector instructions, 
with an expected  performance  increment of 4  times. 

2.1 Obstacle  detection 
Once  a  range  image  is produced, a set of  range-based 
obstacle  detectors  are  executed on  each  image column, 
looking for gaps and discontinuities in the range  data 
that indicate  impassable regions. Impassable  regions 
are  classified as either  negative or positive obstacles. 
Negative obstacles include ditches, holes, sudden 
drop-offs,  and steep down grades  (see  examples  in 
Figure 5-7). Positive obstacles are any upward  protru- 
sion out of the ground  plane steep enough to be  im- 
passable or cause  a tip-over hazard. Our system  has 
separate detectors for  negative  and  positive obstacles. 

Negative obstacles. The height profile  of one column 
of elevation  data from Figure 5 is shown in Figure 3. 
A  characteristic gap in the range data, followed  by  a 
vertical  edge is usually  present  where  a ditch or hole 

5 15 25 
Figure 3: Elevation profile along one column of the 
image of Figure 5, showing a 60 cm wide negative 
obstacle (encircled). All units are  in meters. 



exists. The length of the vertical edge at the fir side o f  
a ditch or hole is a function  of the obstacle's range 
from the sensor (see Figure 4). If a gap threshold and a 
range-dependent  vertical  edge threshold are  exceeded, 
that  image pixel is labelled a negative obstacle pixel. 

marked  in blue in the elevation maps. The area 
marked  purple behind the  front  edge of a negative  ob- 
stacle  corresponds to occluded points for which range 
measurements  are  not available. 

Figure 4: Negative obstacle detection. Highlighted 
are the visible front  edge and back  wall  of the nega- 
tive obstacle. 
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Figure 5. Top: left CCD image of a stereo  pair a0 
quired at the Penyman facility, Aberdeen Proving 
Ground. A 60 cm wide ditch is visible at a distance d 
10  meters (showing as a horizontal feature  in the  im- 
age). Bottom: elevation map computed  via  stereo tri- 
angulation. Points corresponding to actual range 
measurements are drawn in pale  green; surface  patches 
drawn in shaded white  have  been interpolated h m  
such measurements. All  units  are in meters; the  vehi- 
cle is  located at position (O,O,O)). The edges of the 
ditch (detected as a negative  obstacle  by  the algorithm 
of Section 2.1)  are  marked in blue; the  occluded sur- 
face behind the front  edge of the negative  obstacle is 
marked in purple. 
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Examples of  negative  obstacle detection with 
CCD and  FLIR  cameras  are shown in Figure 5 to 7. 
Note  that  only the front edge and part of the back  edge 
of a negative  obstacle  are visible, and  they  have been 

Figure 6 .  See caption of Figure 5. In this case, a 60 
cm  wide ditch was at a distance of 6 meters in  front o f  
the vehicle, and the  image is from a pair of  FLIR cam- 
eras. 
Positive obstacles. Positive obstacles are  detected  by 
checking  for  upward slanted edges in  the  range data. If 
the  height of an upwards-slanted  edge  exceeds a height 
threshold and the slope of  the  edge  exceeds a slope 
threshold, the image  pixel  is  labelled as a positive 
obstacle. Once all columns are  processed for negative 
and positive obstacles, separate blob filters are passed 
over the obstacle  image to remove isolated detection 
that is likely to be  false alarms. An obstacle list is 
then  passed to a map management module that popu- 
lates an obstacle map. Examples of positive obstacle 
detection  are  shown in Figure 8 to 10 for both CCD 
and  FLIR images. 

2.2 Sensor pointing 
A pointing subsystem is  used to control the pan/tilt 
head holding the  narrow  FOV stereo cameras. The 
user  can specify a goal  position up to 50 meters  away. 
An  obstacle-avoiding  planner  searches the obstacle 
map for the shortest distance  two-dimensional  path 
constructed primarily of clothoid segments. This path 
is  projected onto the  range  image to determine  the 
elevation of  each waypoint. A gaze control algorithm 



filters and smooths the resultant 3D path and points 
the padtilt cameras at the path  the  vehicle will be 
commanded to travel. 

A position on the  path is chosen  by applying a 
look-ahead metric that is dependent  on  the  vehicle’s 
current speed. The look-ahead distance is  larger  than 
the predicted distance required to bring the vehicle to a 
stop on cross-country terrain. The goal of  the  current 
gaze control algorithm is to keep the look-ahead  posi- 
tion centered in the vision sensor’s field of view. The 
gaze control algorithm also sends a set of points to a 
low-level image processing module that bound  the 
path near the stopping distance. These points are  used 
to determine where to locate a high-resolution  window 
of attention within which  negative obstacles will be 
searched  for. 
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Figure 7. Top: left  image  of a stereo pair acquired in 
the  area surrounding JPL. The road  terminates 
abruptly on a crag  over a field of tall grass. Bottom: 
elevation map computed via stereo triangulation ( see  
caption of Figure 1 for the description of the color 
code). All units are in meters; the  vehicle is located at 
position (O,O,O)).  The steep drop-off has been  detected 
in spite of the difficult light conditions. 

3 Terrain Cover Classification 

While the elevation and obstacle maps give a com- 
plete geometric representation of the scene, they tell us 
only one part of the story. Once  an  obstacle has been 
detected on the grounds of geometric analysis, the  next 
step is to characterize it in terms of its traversability 

properties. Our approach to this problem is to classify 
each point of the scene as a “material class’’  in a prede- 
termined family, and to infer its traversability charac- 
teristics from the combination of this information and 
range  data. This information hsion step may take the 
form of a rule-based system. For example, one simple 
set of rules could be the following: “if the  detected 
obstacle  is  up to 25  cm tall, drive through it with 
unchanged velocity; if it is between 25  and 35 cm  and 
it is classified as a rock or other impenetrable material, 
slow down to a safer velocity; if it is more than 35 cm 
tall, reduce  velocity  and drive through it only if it  is 
classified as penetrable  vegetation”. 
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Figure 8. Top: left  image of a FLIR cameras  stereo 
pair acquired at the  Aberdeen Proving Ground. The 
white areas are  rocks lying on the ground. Bottom: 
elevation map computed via stereo triangulation. 
Points corresponding to actual range  measurements are 
drawn  in  pale green; surface patches  drawn in shaded 
white  have  been  interpolated from such  measurements. 
Positive obstacles, detected  by  the algorithm of Sec-  
tion 2.1, are  marked  in red. All units are  in meters; 
the vehicle is located at position (O,O,O)). 

The  choice  of the terrain  cover class taxonomy 
depends mainly  on two factors:  which classes are  use- 
ful for autonomous navigation, and  which classes can 
actually  be  detected with the available sensor informa- 
tion. The right balance must be struck between  the 
desire for high  descriptiveness  (which would lead to a 
dense  taxonomy)  and the need for robust classification 
(which  favours  fewer  classes). 

A 



in our implementation we  perform terrain  classifi- 
cation based  on color. Other visual features  (such as 
shape and texture) are the object of current research [5]. 
A  basic set of classes, used for the experiments in this 
paper, are:  green vegetation, dry vegetation, soil/rock, 
and outliers (i.e., anything that cannot be  safely  clas- 
sified into any of  the previous classes). The classifica- 
tion algorithm is  based  on  Bayesian assignment. The 
class likelihoods are  represented  using  a  mixture-of- 
Gaussian model, and the parameters  of  the models arc 
estimated from training data using  the  Expectation 
Maximization algorithm. A support region for the 
model likelihood is estimated, and all color vectors 
that are outside such support are classified as outliers. 
An  advantage  of  the Bayesian approach  is that the 
classification  is  expressed in terms of posterior class 
probabilities, which  facilitates  fusion with data h m  
other sensors. 

A  well-known  problem  of color classification is 
that the measured color has  a  spectrum  which  depends 
both on  the  spectrum  of the illuminant and on the 
reflectivity  characteristics of the viewed surfm [2]. 
Ideally, only the last term is present; in  practice, we 
have to deal with the changing illumination condi- 
tions. A typical preprocessing step is lightness nor- 
malization. While this procedure is known to work 
well for indoor imagery, for outdoor images we  have 
not found experimental evidence supporting its utility. 
One possible explanation is that a surface  in  the 
shadow is actually illuminated by a different spectrum 
than  a surface in  direct sunlight. In other words, not 
only the lightness is different  for the two surfaces, but 
also the  spectral composition of the reflected light. In 
fact, we have  verified that most of  the  chromatic varia- 
tions of light reflected  fiom any of the classes of  the 
system is well represented  by the mixture-of-Gaussian 
class-likelihood profile. However, in order to deal with 
large  chromatic  variation  (corresponding to different 
times of the  day and of the year and to changing 
weather), it is  advisable to use an external reference 
onto which to calibrate the color classifier. 

The second row of Figure 9  and 10 shows the r e  
sults of color classification for those pixels which  cor- 
respond to points less than 50 meters  from the camera. 
Note in passing that  we didn’t provide a specific 
“sky” class; therefore,  all pixels corresponding  to  the 
sky are (correctly) classified as outliers. Also, note  that 
the metal pipes visible in Figure 10 have  been  (incor- 
rectly)  classified as soil/rock. This is  because in the 
set used to train the classifier  there were a  number o f  
images with rocks having a  very “metallic” color. 
Since metal objects are typically non-traversable, there 
was  no point in refining the material class taxonomy 
to account for such  a specimen. 

For each stereo pair, positive obstacles have  also 
been detected, and the  corresponding class color code 
overlayed in the last row of the figure. In the  case af 
Figure 10 (right), the obstacles have  been  classified as 
rock/soil, and  therefore  are not traversable. In the case 
of Figure 9 (left>, obstacles on the ground have been 
classified as dry vegetation, and in  fact they are just 
small (traversable) bushes 
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Figure 9 (left) and 10 (right): Top row:  left  image  from  a stereo pair acquired at JPL. Second row:  terrain  cover  clas- 
sification, color-coded as follows: brown: soillrock; yellow: dry vegetation; green:  green vegetation; red: outlier. 
Third row: elevation map computed via  stereo matching (see caption of Figure 8 for the description of the  color 
code). All units are  in meters; the vehicle is located at position (O,O,O)).  Fourth row:  obstacle map overlay on the 
image  plane,  where  the obstacles are  color-coded  according  to  the  corresponding terrain cover class. 


